Trigonometry is the study of triangles, specifically right triangles.

Trigonometric Functions
The six trigonometric functions are sine (sin), complementary sine (cos), tangent (tan), complementary secant (cosec or csc), secant (sec), and complementary tangent (cot).

Trigonometric Angle
An angle in trigonometry can be represented by θ, A, B, C or α, β, γ etc. (0 < θ < 90°)

![Figure 1](image)

The memorization of this mnemonic can be useful for remembering the phrase: “Some Officers Have Curly Auburn Hair Til Old Age”

\[
\begin{align*}
\sin \theta & = \frac{\text{opp}}{\text{hyp}} = \text{SOH} \\
\cos \theta & = \frac{\text{adj}}{\text{hyp}} = \text{CAH} \\
\tan \theta & = \frac{\text{opp}}{\text{adj}} = \text{TOA} \\
\csc \theta & = \frac{\text{hyp}}{\text{opp}} \\
\sec \theta & = \frac{\text{hyp}}{\text{adj}} \\
\cot \theta & = \frac{\text{adj}}{\text{opp}}
\end{align*}
\]

Example 1: For 0 < θ < 90°, given \(\sin \theta = 4/5\). Determine the other trigonometric functions.

Step 1: Draw a figure showing θ, hyp, adj, and opp.

Step 2: Determine one unknown using the Pythagorean Theorem \(c^2 = a^2 + b^2\)

Step 3: Determine each using the above ratios.

\[
\begin{align*}
\sin \theta & = _______ \\
\cos \theta & = _______ \\
\tan \theta & = _______ \\
\csc \theta & = _______ \\
\sec \theta & = _______ \\
\cot \theta & = _______
\end{align*}
\]
Trigonometry

Pythagorean Identities: Verify using example 1.
\[\sin^2 \theta + \cos^2 \theta = 1 \]
\[\tan^2 \theta + 1 = \sec^2 \theta \]
\[\cos^2 \theta + 1 = \csc^2 \theta \]

Even/Odd Functions
\[\cos \theta \text{ and } \sec \theta \text{ are even functions, i.e. } \cos(-\theta) = \cos \theta \text{ and } \sec(-\theta) = \sec \theta \]
\[\sin \theta, \tan \theta, \csc \theta, \text{ and } \cot \theta \text{ are odd functions, i.e. } \sin(-\theta) = -\sin \theta, \text{ etc.} \]

Degrees to Radian Formula
If \(\theta \) in an angle in degrees and \(r \) is an angle in radians, then
\[\pi/180 = r/\theta \quad \theta = 180r/\pi \quad r = \pi \theta/180 \]

Example 2: Convert the following:

 a. 3 \(\pi/2 \) into degrees
 b. 130° into radians
 c. 270° into radians
 d. 3\(\pi/4 \) into degrees

Table 1: Using the conversion from degree to radian, fill in the column of angle in radians.

<table>
<thead>
<tr>
<th>Angle (r)</th>
<th>Angle (°)</th>
<th>sin</th>
<th>cos</th>
<th>tan</th>
<th>csc</th>
<th>sec</th>
<th>cot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>n.d.</td>
<td>1</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>1/2</td>
<td>(\sqrt{3}/2)</td>
<td>1/(\sqrt{3})</td>
<td>2</td>
<td>2/(\sqrt{3})</td>
<td>(\sqrt{3})</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>1/(\sqrt{2})</td>
<td>1/(\sqrt{2})</td>
<td>1</td>
<td>(\sqrt{2})</td>
<td>(\sqrt{2})</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td>(\sqrt{3}/2)</td>
<td>1/2</td>
<td>(\sqrt{3})</td>
<td>2/(\sqrt{3})</td>
<td>2</td>
<td>1/(\sqrt{3})</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
<td>0</td>
<td>n.d.</td>
<td>1</td>
<td>n.d.</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>